module prediction.river.river_classifier
River Predictive Model Wrapper.
This module contains a wrapper class for river predictive models.
Copyright (C) 2022 Johannes Haug.
class RiverClassifier
Wrapper for river predictive models.
Attributes:
model
(ClassifierMixin): The river predictor object.feature_names
(List[str]): A list of all feature names.
method RiverClassifier.__init__
__init__(
model: river.base.classifier.Classifier,
feature_names: List[str],
reset_after_drift: bool = False
)
Inits the wrapper.
Args:
model
: The river predictor object.feature_names
: A list of all feature names.reset_after_drift
: A boolean indicating if the predictor will be reset after a drift was detected.
method RiverClassifier.partial_fit
partial_fit(
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
y: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
sample_weight: Optional[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]] = None
)
Updates the predictor.
Args:
X
: Array/matrix of observations.y
: Array of corresponding labels.sample_weight
: Weights per sample. Not used by float at the moment, i.e., all observations in x receive equal weight in a pipeline run.
method RiverClassifier.predict
predict(
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]
) → Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]
Predicts the target values.
Args:
X
: Array/matrix of observations.
Returns:
ArrayLike
: Predicted labels for all observations.
method RiverClassifier.predict_proba
predict_proba(
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]
) → Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]
Predicts the probability of target values.
Args:
X
: Array/matrix of observations.
Returns:
ArrayLike
: Predicted probability per class label for all observations.
method RiverClassifier.reset
reset()
Resets the predictor.
This file was automatically generated via lazydocs.