module prediction.evaluation.prediction_evaluator
Predictive Model Evaluator.
This module contains an evaluator class for online predictive models.
Copyright (C) 2022 Johannes Haug.
class PredictionEvaluator
Online prediction evaluator class.
Attributes:
measure_funcs
(List[Callable]): List of evaluation measure functions.decay_rate
(float |None): If this parameter is not None, the measurements are additionally aggregated with the specific decay/fading factor.window_size
(int | None): If this parameter is not None, the measurements are additionally aggregated in a sliding window.kwargs
(dict): A dictionary containing additional and specific keyword arguments, which are passed to the evaluation functions.testing_comp_times
(list): List of computation times per testing iteration.training_comp_times
(list): List of computation times per training iteration.memory_changes
(list): Memory changes (in GB RAM) per training iteration of the online feature selection model.result
(dict): The raw and aggregated measurements of each evaluation measure function.
method PredictionEvaluator.__init__
__init__(
measure_funcs: List[Callable],
decay_rate: Optional[float] = None,
window_size: Optional[float] = None,
**kwargs
)
Inits the prediction evaluation object.
Args:
measure_funcs
: List of evaluation measure functions.decay_rate
: If this parameter is not None, the measurements are additionally aggregated with the specific decay/fading factor.window_size
: If this parameter is not None, the measurements are additionally aggregated in a sliding window.
kwargs: A dictionary containing additional and specific keyword arguments, which are passed to the evaluation functions.
method PredictionEvaluator.run
run(
y_true: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
y_pred: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
predictor: float.prediction.base_predictor.BasePredictor,
rng: numpy.random._generator.Generator
)
Updates relevant statistics and computes the evaluation measures.
Args:
y_true
: True target labels.y_pred
: Predicted target labels.X
: Array/matrix of observations.predictor
: Predictor object.rng
: A numpy random number generator object.
Raises:
TypeError
: If the calculation of a measure runs an error.
This file was automatically generated via lazydocs.