module prediction.evaluation.prediction_evaluator
Predictive Model Evaluator.
This module contains an evaluator class for online predictive models.
Copyright (C) 2022 Johannes Haug.
class PredictionEvaluator
Online prediction evaluator class.
Attributes:
measure_funcs(List[Callable]): List of evaluation measure functions.decay_rate(float |None): If this parameter is not None, the measurements are additionally aggregated with the specific decay/fading factor.window_size(int | None): If this parameter is not None, the measurements are additionally aggregated in a sliding window.kwargs(dict): A dictionary containing additional and specific keyword arguments, which are passed to the evaluation functions.testing_comp_times(list): List of computation times per testing iteration.training_comp_times(list): List of computation times per training iteration.memory_changes(list): Memory changes (in GB RAM) per training iteration of the online feature selection model.result(dict): The raw and aggregated measurements of each evaluation measure function.
method PredictionEvaluator.__init__
__init__(
measure_funcs: List[Callable],
decay_rate: Optional[float] = None,
window_size: Optional[float] = None,
**kwargs
)
Inits the prediction evaluation object.
Args:
measure_funcs: List of evaluation measure functions.decay_rate: If this parameter is not None, the measurements are additionally aggregated with the specific decay/fading factor.window_size: If this parameter is not None, the measurements are additionally aggregated in a sliding window.
kwargs: A dictionary containing additional and specific keyword arguments, which are passed to the evaluation functions.
method PredictionEvaluator.run
run(
y_true: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
y_pred: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
predictor: float.prediction.base_predictor.BasePredictor,
rng: numpy.random._generator.Generator
)
Updates relevant statistics and computes the evaluation measures.
Args:
y_true: True target labels.y_pred: Predicted target labels.X: Array/matrix of observations.predictor: Predictor object.rng: A numpy random number generator object.
Raises:
TypeError: If the calculation of a measure runs an error.
This file was automatically generated via lazydocs.