module prediction.evaluation.measures.noise_variability
Noise Variability Measure.
This function returns the noise variability of a predictor. This measure corresponds to the mean difference of a performance measure when perturbing the input with noise. It is hence an indication of a predictor's stability under noisy inputs.
Copyright (C) 2022 Johannes Haug.
function noise_variability
noise_variability(
y_true: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
y_pred: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
predictor: float.prediction.base_predictor.BasePredictor,
reference_measure: Callable = <function zero_one_loss at 0x11d1669d0>,
reference_measure_kwargs: Optional[dict] = None,
cont_noise_loc: float = 0,
cont_noise_scale: float = 0.1,
cat_features: Optional[list] = None,
cat_noise_dist: Optional[List[list]] = None,
n_samples: int = 10,
rng: numpy.random._generator.Generator = Generator(PCG64) at 0x128EB4040
) → float
Calculates the variability of a predictor under input noise.
Args:
y_true
: True target labels.y_pred
: Predicted target labels.X
: Array/matrix of observations.predictor
: Predictor object.reference_measure
: Evaluation measure function.reference_measure_kwargs
: Keyword arguments of the reference measure.cont_noise_loc
: Location (mean) of a normal distribution from which we sample noise for continuous features.cont_noise_scale
: Scale (variance) of a normal distribution from which we sample noise for continuous features.cat_features
: List of indices that correspond to categorical features.cat_noise_dist
: List of lists, where each list contains the noise values of one categorical feature.n_samples
: Number of times we sample noise and investigate divergence from the original loss.rng
: A numpy random number generator object. The global random state of the pipeline will be used to this end.
Returns:
float
: Mean difference to the original loss for n input perturbations.
This file was automatically generated via lazydocs.