module feature_selection.ofs
Online Feature Selection Method.
This module contains the Online Feature Selection model based on a Perceptron, which was introduced by: WANG, Jialei, et al. Online feature selection and its applications. IEEE Transactions on knowledge and data engineering, 2013, 26. Jg., Nr. 3, S. 698-710.
Copyright (C) 2022 Johannes Haug.
class OFS
OFS feature selector.
This feature selector uses the weights of a Perceptron classifier.
method OFS.__init__
__init__(
n_total_features: int,
n_selected_features: int,
reset_after_drift: bool = False,
baseline: str = 'constant',
ref_sample: Union[float, numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 0
)
Inits the feature selector.
Args:
n_total_features
: The total number of features.n_selected_features
: The number of selected features.reset_after_drift
: A boolean indicating if the change detector will be reset after a drift was detected.baseline
: A string identifier of the baseline method. The baseline is the value that we substitute non-selected features with. This is necessary, because most online learning models are not able to handle arbitrary patterns of missing data.ref_sample
: A sample used to compute the baseline. If the constant baseline is used, one needs to provide a single float value.
method OFS.reset
reset()
Resets the feature selector.
method OFS.weight_features
weight_features(
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
y: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]
)
Updates feature weights.
Args:
X
: Array/matrix of observations.y
: Array of corresponding labels.
This file was automatically generated via lazydocs.