module feature_selection.fsds
Fast Feature Selection on Data Streams Method.
This module contains the Fast Feature Selection in Data Streams model that is able to select features via a sketching algorithm without requiring supervision. The method was introduced by: HUANG, Hao; YOO, Shinjae; KASIVISWANATHAN, Shiva Prasad. Unsupervised feature selection on data streams. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015. S. 1031-1040.
Copyright (C) 2022 Johannes Haug.
class FSDS
FSDS feature selector.
This code is adopted from the official Python implementation of the authors with minor adaptations.
method FSDS.__init__
__init__(
n_total_features: int,
n_selected_features: int,
l: int = 0,
m: Optional[int] = None,
B: Optional[list, numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]] = None,
k: int = 2,
reset_after_drift: bool = False,
baseline: str = 'constant',
ref_sample: Union[float, numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 0
)
Inits the feature selector.
Args:
n_total_features
: The total number of features.n_selected_features
: The number of selected features.l
: Size of the matrix sketch with l << m.m
: Size of the feature space (i.e. dimensionality).B
: Matrix sketch.k
: Number of singular vectors.reset_after_drift
: A boolean indicating if the change detector will be reset after a drift was detected.baseline
A string identifier of the baseline method. The baseline is the value that we substitute non-selected features with. This is necessary, because most online learning models are not able to handle arbitrary patterns of missing data.ref_sample
: A sample used to compute the baseline. If the constant baseline is used, one needs to provide a single float value.
method FSDS.reset
reset()
Resets the feature selector.
method FSDS.weight_features
weight_features(
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
y: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]
)
Updates feature weights.
FSDS is an unsupervised approach and does not use the target information.
Args:
X
: Array/matrix of observations.y
: Array of corresponding labels.
This file was automatically generated via lazydocs.