module feature_selection.fires
FIRES Feature Selection Method.
This module contains the Fast, Interpretable and Robust Evaluation and Selection of features (FIRES) with a Probit base model and normally distributed parameters as introduced by: HAUG, Johannes, et al. Leveraging model inherent variable importance for stable online feature selection. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020. S. 1478-1502. URL: https://dl.acm.org/doi/abs/10.1145/3394486.3403200
Copyright (C) 2022 Johannes Haug.
class FIRES
FIRES feature selector.
method FIRES.__init__
__init__(
n_total_features: int,
n_selected_features: int,
classes: list,
mu_init: Union[int, numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 0,
sigma_init: Union[int, numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 1,
penalty_s: float = 0.01,
penalty_r: float = 0.01,
epochs: int = 1,
lr_mu: float = 0.01,
lr_sigma: float = 0.01,
scale_weights: bool = True,
reset_after_drift: bool = False,
baseline: str = 'constant',
ref_sample: Union[float, numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 0
)
Inits the feature selector.
Args:
n_total_features
: The total number of features.n_selected_features
: The number of selected features.classes
: A list of unique target values (class labels).mu_init
: Initial importance, i.e. mean of the parameter distribution. One may either set the initial values separately per feature (by providing a vector), or use the same initial value for all features (by providing a scalar).sigma_init
: Initial uncertainty, i.e. standard deviation of the parameter distribution. One may either set the initial values separately per feature (by providing a vector), or use the same initial value for all features (by providing a scalar).penalty_s
: Penalty factor in the optimization of weights w.r.t the uncertainty (corresponds to gamma_s in the paper).penalty_r
: Penalty factor in the optimization of weights for the regularization (corresponds to gamma_r in the paper).epochs
: Number of epochs in each update iteration.lr_mu
: Learning rate for the gradient update of the mean.lr_sigma
: Learning rate for the gradient update of the standard deviation.scale_weights
: If True, scale feature weights into the range [0,1]. If False, do not scale weights.reset_after_drift
: A boolean indicating if the change detector will be reset after a drift was detected.baseline
: A string identifier of the baseline method. The baseline is the value that we substitute non-selected features with. This is necessary, because most online learning models are not able to handle arbitrary patterns of missing data.ref_sample
: A sample used to compute the baseline. If the constant baseline is used, one needs to provide a single float value.
method FIRES.reset
reset()
Resets the feature selector.
method FIRES.weight_features
weight_features(
X: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]],
y: Union[numpy._array_like._SupportsArray[numpy.dtype], numpy._nested_sequence._NestedSequence[numpy._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]
)
Updates feature weights.
Args:
X
: Array/matrix of observations.y
: Array of corresponding labels.
This file was automatically generated via lazydocs.