module change_detection.tornado.hddm_a
Hoeffding's Bound based Drift Detection Method (A_test Scheme).
The source code was adopted from tornado, please cite:
The Tornado Framework By Ali Pesaranghader University of Ottawa, Ontario, Canada E-mail: apesaran -at- uottawa -dot- ca / alipsgh -at- gmail -dot- com
Original Paper: Frías-Blanco, Isvani, et al. "Online and non-parametric drift detection methods based on Hoeffding’s bounds." Published in: IEEE Transactions on Knowledge and Data Engineering 27.3 (2015): 810-823. URL: http://ieeexplore.ieee.org/abstract/document/6871418/
Copyright (C) 2022 Johannes Haug.
class HDDMA
HDDMA change detector.
method HDDMA.__init__
__init__(
drift_confidence: float = 0.001,
warning_confidence: float = 0.005,
test_type: str = 'two-sided',
reset_after_drift: bool = False
)
Inits the change detector.
Args:
drift_confidence
: Todo (left unspecified by the Tornado library).warning_confidence
: Todo (left unspecified by the Tornado library).test_type
: Todo (left unspecified by the Tornado library).reset_after_drift
: A boolean indicating if the change detector will be reset after a drift was detected.
method HDDMA.detect_change
detect_change() → bool
Detects global concept drift.
Returns:
bool
: True, if a concept drift was detected, False otherwise.
method HDDMA.detect_partial_change
detect_partial_change() → Tuple[bool, list]
Detects partial concept drift.
Notes:
HDDMA does not detect partial change.
method HDDMA.detect_warning_zone
detect_warning_zone() → bool
Detects a warning zone.
Returns:
bool
: True, if the change detector has detected a warning zone, False otherwise.
method HDDMA.partial_fit
partial_fit(pr_scores: List[bool])
Updates the change detector.
Args:
pr_scores
: A boolean vector indicating correct predictions. 'True' values indicate that the prediction by the online learner was correct, otherwise the vector contains 'False'.
method HDDMA.reset
reset()
Resets the change detector.
This file was automatically generated via lazydocs.